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Hyaluronic acid (hyaluronan), a naturally occurring polymer within the skin, has been extensively studiedAbstract
since its discovery in 1934. It has been used in a wide range of medical fields as diverse as orthopedics and
cosmetic surgery, but it is in tissue engineering that it has been primarily advanced for treatment. The breakdown
products of this large macromolecule have a range of properties that lend it specifically to this setting and also to
the field of wound healing. It is non-antigenic and may be manufactured in a number of forms, ranging from gels
to sheets of solid material through to lightly woven meshes. Epidermal engraftment is superior to most of the
available biotechnologies and, as such, the material shows great promise in both animal and clinical studies of
tissue engineering. Ongoing work centers around the ability of the molecule to enhance angiogenesis and the
conversion of chronic wounds into acute wounds.

1. Background original application of Integra®, Johnson & Johnson)1 to fully
formed bilaminar skin substitutes formed as composite cultures

In recent years, research into wound healing has expanded
(e.g. Apligraf®, Organogenesis Inc.; Novartis Pharma AG, Basel,

dramatically. This has been fueled by a number of sentinel discov-
Switzerland). Bio-engineered materials have also been assessed ineries, particularly over the last 25 years. Techniques described in
fields as diverse as orthopedic,[4] spinal cord,[5] and tracheal sur-the last quarter of a century include human keratinocyte culture in
gery,[6] although they are not yet in common use. In general,1975,[1] the first dermal analog in 1979,[2] and the discovery of a
research has been concentrated in two areas. The first of these, thevariety of cytokines and inflammatory mediators that modulate
complex interactions based upon inflammatory mediators andwound healing (see Martin[3]). The opening of each field led to
cytokines, is beyond the remit of this discussion, but is an ex-explosions in technology, which have had ramifications in almost
panding field in which, for instance, manipulation of specificall branches of medicine. Within wound healing alone, tissue-

engineered products range from simple wound dressings (the molecules may affect wound healing.[7,8] The second large field

1 The use of trade names is for product identification purposes only and does not imply endorsement.
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under study is the extracellular matrix and its interactions with million daltons[16] and may consist of >30 000 repeating units;[17]

cells. However, it is fair to say that in recent years both lines of as such, it is one of the larger extracellular matrix components.
research are beginning to coalesce and current work includes the Hyaluronic acid can be sourced from a broad range of tissues and
study of bio-engineered materials that contain bio-active mole- animals and its structure, when purified, is identical throughout
cules. species and phyla. It has been documented in such diverse settings

as Pseudomonas slime,[18] Ascaris worms,[19] rats, rabbits,[20] andResearch into the extracellular matrix has generally been divid-
humans.[21] Equally, it has been documented in tissues as diverseed into two materials: collagen and hyaluronic acid (hyaluronan)
as the skin,[21] aorta, cartilage,[20] and even the brain.[22]matrices. The first collagen matrix was developed by Bell et al.[2]

in the 1980s and is commercially available as Apligraf®. Yannas The hyaluronic acid molecule is readily soluble in water, pro-
et al.[9] developed a matrix composed of collagen and chondroitin ducing a viscous liquid or gel (figure 2) that behaves as a lubricant.
sulfate with a silastic membrane. This material has since evolved The viscosity appears to be related to the length of the chains;
into the commercial product Integra®, now commonly used as a longer chains appear to become entangled and thus have increased
dermal scaffold for regeneration. All collagen products used in this viscosity.[23] Concurrently, the large-chain molecule demonstrates
way are xenogenic, usually utilizing bovine collagen with another hygroscopic properties and adsorbs water from the immediate
product (e.g. Integra® uses shark fin-derived chondroitin-6-sul- environment, forming a gel at low concentrations[24] and confer-
fate). ring homeostatic properties to the material.

In contrast to collagen, hyaluronic acid materials are derived The solubility of hyaluronic acid in water of has proven to be a
from the same base product, which is highly conserved between hindrance to the development of polymers for tissue engineering;
species. Chemical modification is necessary in order to manufac- when a sheet of purified hyaluronic acid is placed in even a small
ture a stable polymer, but the material is essentially the same amount of water, it liquefies. This has beneficial effects in some
regardless of its origin. Furthermore, the material is relatively applications (e.g. orthopedic surgery), but within the field of tissue
unique within the field of tissue engineering since its degradation engineering more structural stability is required. Chemical modifi-
products appear to be proactive in wound healing. This has led to a cation of the molecule has been necessary in order to circumvent
wealth of research within wound healing and has allowed the this problem. The most common method of stabilization of the
material to be used in a variety of ways throughout medicine that molecule is by alcohol esterification, particularly using ethyl and
are as diverse as scaffolds for the growth of dermis,[10] cartilage benzyl alcohol (reviewed in detail by Campoccia et al.[16]). In
defects,[11] glial cells,[12] and even as a substrate for the assessment brief, alcohol esterification (usually benzyl) cross-links the poly-
of spermatic motility.[13] mer to a variable degree depending on the circumstances of the

reaction. This leads to molecules with differing solubilities[25] that
2. Physico-Chemistry of Hyaluronic may be described by their percentage esterification; for example,
Acid (Hyaluronan) the HYAFF® materials may be described as HYAFF®-11p75 or

HYAFF®-11p95, indicating 75% and 95% esterification of theHyaluronic acid was first discovered in the vitreous humor of
the eye in 1934[14] and was subsequently synthesized in vitro in
1964.[15] It is a polymer based upon a double unit of two sugars: D-
glucuronic acid and N-acetyl-glucosamine (figure 1). It forms non-
branching polymers that, when extracted, typically weigh several

D-glucuronic acid N-acetyl-glucosamine

COO−

O

O O

O O
H H

H

H

H H

H

H

OH HO

OH

H

CH2OH

NHCOCH3

Fig. 1. Chemical structure of hyaluronic acid, a polymer based upon a
double unit of D-glucuronic acid and N-acetyl-glucosamine.

Fig. 2. Hyaluronic acid dissolved in water to produce a viscous liquid or gel.
(Reproduced courtesy of Fidia Advanced Biopolymers s.r.l., via Ponte della
Fabbrica No. 3/B, 35031 Abano Terme, Italy.)
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benzyl ester of hyaluronic acid, respectively. It is thought that the cated in a number of cell-migration pathologies, particularly the
movement of malignant cells.[31,32] As well as manufacturing theesterification prevents water ingression into the macromolecule,
macromolecule, fibroblasts also elaborate hyaluronidase, the en-which has the effect of rendering it less soluble. An adverse effect
zyme responsible for its degradation, and are able to internalizeof this is to prevent fibroblast binding and migration along the
both the original molecule and, particularly, its breakdown prod-molecule meaning that the cell is less able to degrade the molecule
ucts.[33] Hyaluronidase cleaves the macromolecule into a numberat will. This delays degradation to a variable extent; the 75%
of smaller polymers, each comprised of short repeating chainsesterified material degrades over the course of 7–14 days, while
based upon the same repeating base pair unit. It is these degrada-the 95% esterified product may take up to 2 months to degrade.[16]

tion products that have been the focus of much of the workOnce rendered insoluble the polymer may be manufactured in a
surrounding the molecule; unlike the collagen-based productswide range of forms, including ropes and sheets (figure 3).
mentioned in section 1, the breakdown products of hyaluronic acid

As a material used for research or medical purposes hyaluronic
appear to have properties that actively affect wound healing and

acid may be extracted from a number of sources.[14] The two most
cell kinetics. Studies have indicated that most of the effects

common sources are rooster combs and the Streptococcus bacteri-
attributed to the molecule are applicable to only a narrow range of

um. The former is most commonly used in research and the degradation products and, for convenience, the fragments are now
majority of medical applications, while the latter is the form found divided into short- and long-chain varieties, although there is no
in Restylane® rejuvenation products. The two products, when used finite division.
commercially, appear to have differing rheologic properties, possi-
bly because of the manufacturing process.[26] In animals hyaluron-

3. Wound Healing and Hyaluronic Acid
ic acid is formed, possibly uniquely, at the cell surface of fibro-
blasts by extrusion into the extracellular matrix in close associa- In 1991, West et al.[34] demonstrated that the degradation prod-
tion with a dedicated receptor, CD44. There are a number of ucts of hyaluronic acid were pro-angiogenic, and noted that this
dedicated synthetic enzymes that form a family known as the effect was limited to fragments of between 4 and 25 disaccharides
hyaluronic acid synthase (HAS) proteins,[27] and synthesis appears in length. This was one of the first studies into wound modulation
to be enhanced in conditions of high lactate.[28] Although there are by hyaluronic acid and was soon followed by work that demon-
at least three dedicated cell surface receptors – CD44, RHAMM strated other properties and the dependence of those properties
(receptor for hyaluronic acid mediated motility), and intercellular upon given molecular length fragments. The angiogenic response
adhesion molecule-1 (ICAM-1) – CD44 is the main cell surface- was confirmed in 1994[35] and in 1997,[36,37] then subsequently
binding receptor[29] (particularly the extracellular domain).[30] This attributed to an intracellular effect upon signaling pathways[38,39]

receptor and its interaction with hyaluronic acid have been impli- enhanced by co-application of vascular endothelial growth fac-
tor.[40] This response has particular importance in tumor biology
where it appears to be partly responsible for the enhanced angi-
ogenesis seen within some cancers.[41] Paradoxically, high molec-
ular weight hyaluronic acid appears to inhibit such gene transduc-
tion.[37] This polarity of response is a common phenomenon shared
with, amongst others, epithelial cells; that is, markedly different
responses are dependent upon hyaluronic acid levels.

Cell adhesion within the extracellular matrix also appears to be
closely related to the CD44 receptor and hyaluronic acid. There is
clear evidence that this is the preferential means of attachment for
fibroblasts, and may be the means by which cells first attach to
substrates regardless of subsequent motility.[42] Furthermore, hy-
aluronic acid has been shown to contribute to the regulation of
locomotion in ras-transformed cells.[43]

Collagen deposition by fibroblasts is one of the key factors in
reconstitution of the supporting matrix at the site of a scar and it is

Fig. 3. Examples of different forms of soluble and insoluble hyaluronic acid,
such as ropes and sheets. (Reproduced courtesy of Fidia Advanced Bio-
polymers s.r.l., via Ponte della Fabbrica No. 3/B, 35031 Abano Terme,
Italy.)
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the nature of this deposition that largely determines the quality of lar matrix proteins when exogenous hyaluronic acid is added to the
the scar. Application of long-chain hyaluronic acid to gingiva culture;[46] when fetal forelimbs are cultured in vitro and wounds
results in decreased fibroblast proliferation,[44] a finding mirrored are created, application of exogenous hyaluronic acid decreases
in vitro with cultured fibroblasts.[45,46] It prevents adhesion forma- scarring.[63] Recognition that higher levels of CD44 and RHAMM
tion in a variety of areas as diverse as peripheral nerves[47] and expression are associated with adult wounds may, in part, explain
spinal laminae,[48] and decreases the total amount of collagen the increased scarring demonstrated in in utero studies.[64] It is
deposited at the scar site by adult dermal fibroblasts[49] (but not worth noting that the proportions of hyaluronic acid in normal skin
fetal – see following paragraph). There is also evidence that do not appear to change from fetal life to old age, although the
extracellular matrix remodeling following application of hy- degree to which they are bound within the extracellular matrix
aluronic acid matrices is enhanced and collagen deposition is more increases.[65] One final consideration is that at one extreme of
ordered[50-52] with less degradation.[53] Confusingly, keloid fibro- tissue inflammation, the rejection response to transplanted tissue,
blasts appear to synthesize increased levels of hyaluronic acid hyaluronic acid fragment levels appear to be increased.[66] In
compared with normal (resting) cells,[54] although wound healing summary, it appears that high levels of macromolecular hyaluronic
cells are probably inherently different to the resting population in acid lead to decreased scarring, whilst the adult phenotype is
their in vitro properties,[55] and vascular fibroblasts may demon- characterized by increased numbers of breakdown products and
strate increased contractility in vitro.[56] Fibroblast production of smaller molecules. Clinically, hyaluronic acid-protein complexes
hyaluronic acid may be affected by a number of growth factors.[57] have been used to ameliorate scarring in an adult rat model;
In summary, transforming growth factor (TGF)β-1, basic treatment was associated with an increased rate of healing, scar
fibroblast growth factor (b-FGF), platelet-derived growth factor remodeling, and peri-wound neutrophil levels but decreased mac-
(PDGF), and epidermal growth factor (EGF) all stimulate hy- rophage counts.[67]

aluronic acid production by fibroblasts. Furthermore, their effects The interaction of keratinocytes with hyaluronic acid is com-
appear to be synergistic and not related to mitosis (and, by exten- plex. There is a body of evidence that suggests that the molecule
sion, proliferation). It would, therefore, appear that at least some of lies within normal epithelia in fixed distribution. Furthermore,
the effects of these growth factors upon cell proliferation and within an in vitro monolayer there seems to be preferential co-
migration are mediated via the hyaluronic acid pathway. The location with CD44 at apical and lateral aspects of the cell. This is
situation is, therefore, not clear-cut but, on balance, there would displaced, selectively, by fragments >10U but not <10U.[68] The
appear to be benefits from exogenous application of hyaluronic interaction between cell and peri-cellular hyaluronic acid probably
acid on extracellular matrix remodeling. depends upon the cell’s response to EGF,[69] and actively prolifer-

This latter concept has been extensively studied in the fetal ating cells express higher levels of CD44 than mature cells.[70]

wound healing environment in which prolonged elevation of hy- Furthermore, upregulation of hyaluronic acid production has been
aluronic acid levels has been demonstrated in comparison with demonstrated in association with mitosis,[71] suggesting that the
adult wounds.[58] In particular, the macromolecule does not appear hyaluronic acid-CD44 axis may be, in part, responsible for cell
to be degraded within the fetal environment. Sawai et al.[59] have proliferation, and recently a novel, hyaluronic acid-specific endo-
demonstrated increased levels of hyaluronic acid in sponges im- cytic pathway has been described.[72] The net effect is that exoge-
planted in a fetal model and have postulated that this may be nous hyaluronic acid application has been shown to enhance
related to the rheologic effects. West et al.[60] have demonstrated corneal keratinocyte proliferation, both in vitro and in vivo.[73]

that application of hyaluronidase (and, by extension, increased Corneal cell migration in vitro is enhanced by the addition of
levels of hyaluronic acid fragments) causes increased scarring, hyaluronic acid, an effect that appears to be enhanced by the
while persistently raised levels of the macromolecule decrease further addition of fibronectin or EGF.[74] Application of EGF to
fibroblast contraction.[61] In addition, fetal and adult fibroblasts organotypic cultures results in upregulation of epidermal cell HAS
react differently to hyaluronic acid,[62] with the former demonstrat- and subsequent production of hyaluronic acid, which further re-
ing greater migration in response to applied hyaluronic acid in sults in increased motility and proliferation[75] (in the same study,
vitro. The same study demonstrated that fetal cells do not appear to TGFβ inhibited such responses, an interesting finding given our
be sensitive to many exogenously applied growth factors such as understanding of scarring in wounds that are slow to heal). The
EGF, PDGF, and acidic-FGF. A further in vitro study has shown EGF-dependent production of hyaluronic acid is associated with
that fetal fibroblasts proliferate less and produce more extracellu- deposition of hyaluronic acid around the cell and high levels of

© 2005 Adis Data Information BV. All rights reserved. Am J Clin Dermatol 2005; 6 (6)
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uptake,[76] giving rise to the possibility that it may be acting in an importance.[86] Accordingly, tissue engineering has followed this
autocrine or paracrine fashion. concept and readers will be familiar with collagen-based lattices

There is, therefore, a large body of evidence from scientific such as Integra®, which was developed by Yannas[87] in the 1980s.
studies to indicate that hyaluronic acid might affect, predominant- In keeping with these concepts, two very different hyaluronic acid-
ly in a beneficial manner, several of the components of wound derived products have been developed for wound healing, mainly
healing. With this in mind hyaluronic acid has been used in vivo by Fidia Advanced Biopolymers (Padua, Italy) in association with
for a number of applications resulting in some qualified success. the BRITE-Euram European Union Research Project. The first is a

keratinocyte culture/transfer device (Laserskin®) while other
4. Clinical Experience products are aimed at dermal regeneration.

Laserskin® is sheets of maximally esterified hyaluronic acidObservations regarding the distribution of hyaluronic acid in
with laser-drilled perforations (figure 4) in rows of 40µm andboth normal[77] and disease states[78,79] were recorded as early as
500µm holes.[16] The material was initially designed as a transfer1968 shortly after the first description of the material in the

vitreous humor.[14] The earliest therapeutic use, namely treatment mechanism from in vitro to in vivo for keratinocytes. Cells were
of a burn with purified hyaluronic acid in Italy, appears to have applied to the surface of the material and proliferated across it,
taken place in the same year.[80] Since that time, the hyaluronic eventually migrating down the perforations. It would then be
acid system has found application in almost every field of applied to the wound bed with the (differentiated) cell surface
medicine. Most commonly, hyaluronidase has long been advocat- most superficial, allowing the proliferating cells to populate the
ed as an addition to subcutaneous fluid administration in order to wound bed through the pores. The material was first used in
enhance absorption and subsequently as a means of ameliorating isolated clinical cases in the 1990s and was studied in formal
extravasation of chemotherapeutic agents.[81]

research trials from 1997, showing take rates averaging 48.5% in
Clinical application of hyaluronic acid products falls into two the pig[88] and subsequently assessed in the rat.[89] The latter study

groups: those treatments based upon tissue engineering (particu- demonstrated complete take in 80% of wounds but this result has
larly wound healing) that generally require the application of a not been matched in subsequent studies. In 1998 Harris et al.[90]

sheet or mesh of the material; and those applications in which the described pre-confluent grafting, where the Laserskin® material
material is instilled into a cavity to effect a change in function of was seeded with keratinocytes but these were not allowed to reach
that cavity (particularly for joint conditions). Finally, hyaluronic

confluence. This minimized stratification of the cells and, by
acid derivatives have been used as markers for clinical conditions,

extension, differentiation. The Laserskin® could then be applied in
for example, in intraperitoneal inflammation.[82]

an inverted fashion, effectively applying more proliferative cells to
the wound since the entire surface of the material could be used for5. Tissue Engineering Using Hyaluronic Acid
transfer rather than (in effect) the surface area of the pores. This

The advent of a reliable method for culturing human keratino-
cytes in 1975[83] appeared to herald the onset of a new era in which
skin would be produced in virtually limitless quantities and the
practice of split-thickness skin grafting would be abolished. The
cold reality was that cultured sheets of keratinocytes had excep-
tionally poor take rates, repeatedly blistered up to late time-points,
and were not by any means universally adopted. The Cuono
technique[84] of allogenic whole skin grafting followed by autolo-
gous keratinocyte grafting increased the take rates of the technolo-
gy, but not to a degree where it ever realistically threatened to
supersede skin grafting. Cuono did, however, appreciate the need
for a dermal construct within tissue-engineered whole skin, a
concept eventually confirmed scientifically in 1993 by Kangesu et
al.[85] Interestingly, this is the very concept upon which Reverdin
developed pinch grafting in 1869, although he did not realize its

a b

Fig. 4. Laserskin®, a hyaluronan-derived keratinocyte culture/transfer de-
vice for wound healing. (a) Macroscopic appearance. (b) Microscopic view
of human keratinocyte cultured on the membrane around the pores and a
cross-section below. (Reproduced courtesy of Fidia Advanced Bio-
polymers s.r.l., via Ponte della Fabbrica No. 3/B, 35031 Abano Terme,
Italy.)
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proved successful and had the benefit of a reduced in vitro time, beneath the epidermis. Formal reconstruction of the dermal layer
and has since been adopted by other authors.[91] may be undertaken by grafting allogenic dermis, as in the Cuono

technique (discussed earlier), or by application of novel tissue inClinical studies into Laserskin® application have centered
the form of bio-engineered substrates. In essence, two materialsaround chronic wounds. Lobmann et al.[92] have undertaken pre-
are currently available in the latter group. The first (which has theliminary studies investigating resurfacing of diabetic ulcers. They
longer history) is collagen. The first collagen lattice, based uponcompared take rates with this system when used with keratino-
bovine material, was described in vitro by Bell and cowork-cytes alone or with a number of fibroblast sources, and demon-
ers.[2,110] Problems with early degradation led to the addition ofstrated high rates of healing with co-cultured systems. It is not
shark-fin chondroitin-6-sulfate[9] to produce a material thatclear from the article whether the Laserskin® was used inverted or
demonstrated good neo-dermal regeneration. This was subse-in its traditional orientation; however, they reported wound clo-
quently covered in a silicone sheet and is currently marketed assure after a single grafting technique in 11 of 14 patients and
Integra®. For reasons that remain unclear, this material acceptspostulated that the associated arterial disease found in the remain-
cultured keratinocytes poorly and is currently used with split-der prevented keratinocyte take. These results are superior to those
thickness autograft, although Chan et al.[111] have successfullyfound by Lam et al.[89] in a burn wound, although the principle of
engrafted keratinocytes using Laserskin®.co-culture with fibroblasts to enhance take was demonstrated in

this study. Hollander et al.[91] have used Laserskin® in the treat- The hyaluronan-based dermal scaffolds that are available have
ment of chronic leg ulcers to good effect. been assessed in vitro and in vivo in animal models. The material is

The question of why chronic wounds fail to heal has been the presented in the form of a loose-woven mesh, which looks very
source of much debate and there is now a body of evidence to similar to white felt, with a silicone membrane to provide an
suggest that the micro-environment is abnormal; fibroblasts exhib- element of barrier function in the same way as for collagen
it abnormal proliferative and functional responses to products (figure 5). Differing levels of esterification are available,
cytokines[93-99] and this may underlie their inability to heal. The with corresponding degradation profiles, although remnants of
addition of a healthy epidermis, actively secreting cytokines and both partial and total esters may be seen for some time when
growth factors is believed to underlie the ability of this technology buried in muscle,[112] suggesting that complete degradation may
to heal wounds. Native cells are probably not required as experi- take some time. Our experience with skin suggests that the HY-
ence with Apligraf® has demonstrated good wound healing with AFF-11p75 (partial benzyl ester) is almost completely degraded
allogenic cells[100-102] without a clinical rejection pattern, although within 7–10 days when applied to a full-thickness wound bed.[113]

these cells almost certainly do not survive.[103] The angiogenic effects of the material may be quite pronounced
Epidermolysis bullosa is a disorder in which essential compo- and leave the wound bed in a position to undergo epithelial

nents of the basement membrane, particularly collagen VII, are engraftment after 14 days, a time-point that is also convenient for
manufactured in an abnormal state.[104] Keratinocytes cultured tissue culture techniques. Mouse studies have demonstrated accel-
from such patients demonstrate abnormal responses to stress in
vitro,[105,106] but skin graft wounds (in such patients) treated con-
servatively and with cultured keratinocytes demonstrate few dif-
ferences in healing.[107] Although the disorder is at a genetic level
and, therefore, would be unlikely to be cured by autologous
grafting, Wollina et al.[108] have shown good response rates to
autologous Laserskin® grafting in patients with epidermolysis
bullosa and have also used the technology in a single case of
pyoderma gangrenosum.[109]

There are a number of methods available for reconstructing
dermis. In its simplest form, application of an epidermis will
eventually generate a limited amount of support tissue although
this will take years; clinicians will recognize the long-term appear-
ance of skin grafts applied to, for example, fascial surfaces, in
which there appears to be a limited amount of dermis-like tissue

Fig. 5. Hyaluronan-based dermal scaffold applied onto a full thickness
wound in a pig model with chambers. The loose-woven mesh form resem-
bles white felt and contains a silicone membrane that acts as a barrier.

© 2005 Adis Data Information BV. All rights reserved. Am J Clin Dermatol 2005; 6 (6)
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erated wound healing, without excessive wound contraction, when neering and therapeutics. We look forward to the further develop-
hyaluronic acid-based biopolymers are used as a treatment for full- ment of this important biopolymer.
thickness wounds.[114]

Dermal matrices derived from hyaluronic acid have also been Acknowledgment
assessed in chronic wounds. Hollander et al.[115] have used a
HYAFF mesh co-cultured with dermal fibroblasts and subsequent-

Thank you to Fidia Advanced Biopolymers, Italy for figures 2, 3, and 4.
ly grafted with Laserskin® onto three patients with traumatic loss Part of this work was supported by the BRITE-Euram grant BE3524. The
of skin, following their experience of use of these products in authors have no conflicts of interest that are directly relevant to the content of

this review.chronic wounds.[91] Vasquez et al.[116] have used a hyaluronic acid
matrix in diabetic, neuropathic ulcers on the weight-bearing sur-
face of the foot. The mean age of the patients was 60 years and
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