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Abstract: Plant oils have been utilized for a variety of purposes throughout history, with their
integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly
recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis.
This article briefly reviews the available data on biological influences of topical skin applications of
some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan
oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil,
almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses
on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant
effects on the skin, promotion of wound healing and repair of skin barrier.

Keywords: plant oil; barrier function; barrier repair; wound healing; inflammation; antioxidant activity;
skin aging

1. Introduction

Skin, the largest organ of the body, functions as the necessary interface between the internal
and the external environment. Thus, it continuously protects the body from noxious stimuli, e.g.,
microorganisms, ultraviolet (UV) irradiation, allergens, and irritants. Its unique role and function is
a direct result of its structure and makeup, particularly of the most superficial part, the epidermis.
The main cellular component of the epidermis includes keratinocytes, but there are also melanocytes,
Merkel cells, gamma delta T-lymphocytes, and Langerhans cells. Keratinocytes in the basal layer of the
epidermis preserve their ability to proliferate upward to form the spinous layer and the granular layer.
Beyond the granular layer, the keratinocytes terminally differentiate into corneocytes in the horny
layer. In the outmost part of epidermis, corneocytes (compact keratinocytes without nuclei), together
with the intercellular lamellar compartment (lipids), contribute to the structure and function of the
stratum corneum (SC).

A PubMed literature search was performed using the following terms: plant oils and atopic
dermatitis (AD), skin aging, skin barrier function, skin cancer, and wound healing (WH). Focusing
on potential benefits of topically applied plant oils, we chose those that have been previously
investigated in human skin, animal skin (mainly murine models of skin disease), or in vitro studies
with keratinocytes. The search included clinical use of topical oil plants, but excluded more specific
studies related to the biochemical extraction, purification, and modification of these plant oils and
their byproducts.
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1.1. Stratum Corneum Structure and Function

The structure of SC is like a brick wall, in which the corneocytes or “bricks” are surrounded by the
intercellular lipid lamellae that act like the “mortar” to maintain both SC integrity and skin permeability
barrier [1]. The skin’s barrier function depends mainly on the integrity of the SC. During differentiation,
the plasma membrane of outer keratinocytes is replaced by the specialized cornified envelope (CE)
of corneocytes. The CE gives corneocytes their rigidity. The development of the CE is attributed to
the crosslinking of insoluble proteins (involucrin and loricrin) by transglutaminases. Some of the
lipids (precursors of ceramides, free fatty acids (FFAs), and part of cholesterol) are synthesized in
the keratinocytes at the stratum granulosum (SG) and then released from the lamellar bodies (LBs)
into the SG-SC interface, whereas the remaining lipids are secreted onto the skin surface from the
sebaceous glands (sebum). The permeability barrier is provided by the intercellular lipid-enriched
matrix, which is composed of ceramides, FFAs, and cholesterol. Following the secretion of LBs,
intercellular lipids are enzymatically modified to become the highly hydrophobic and organized
lamellar structure. SC lamellar membranes are mostly composed of saturated FFAs of significantly
longer chain length, which varies between C16 and C26. The main FFAs in the lamellar membranes
are palmitic acid (C16:0) by 10% (mass/mass), stearic acid (C18:0) by 10% (mass/mass), behenic acid
(C22:0) by 15% (mass/mass), lignoceric acid (C24:0) by 25% (mass/mass), and hexacosanoic acid
(C26:0) by 10% (mass/mass) constitution of the total FFAs in SC [2]. Other FFAs that present less
in the SC include oleic acid (C18:1, n-9), eicosapentaenoic acid (C20:5, n-3), arachidonic acid (C20:4,
n-6), docosahexaenoic acid (C22:6, n-3), linoleic acid (C18:2, n-6) as well as its derivatives that are
linolenic acids [↵-linolenic acid (C18:3, n-3), �-linolenic acid (C18:3, n-6) and dihomo-�-linolenic acid
(C20:3, n-6)] [3]. The C22 and C24 saturated FFAs are present in relatively large amounts among the
saturated FFAs, whereas the C18 unsaturated FFAs are the major constituents in unsaturated FFAs.
In fact, linoleic acid is the most abundant polyunsaturated fatty acid [4]. Aside from linoleic acid and
arachidonic acid, the remaining FFAs can be synthesized in the keratinocytes [5–7].

The SC acts as a permeability barrier and an antimicrobial barrier. This antimicrobial barrier is
attributed to the weak acidity of skin surface pH, free sphingoid bases generated from epidermal
ceramides [8], and antimicrobial peptides within the intercellular compartment. Hydration of the
SC is also crucial for the SC integrity and the maintenance of the skin barrier homeostasis. Natural
moisturizing factor (NMF) components within the corneocytes contribute to the hydration of the
SC. The composition of NMF includes free amino acids, pyrrolidone carboxylic acid, lactic acid,
urocanic acid, organic acids, peptides, sugars, urea, citrate, glycerol, etc. Filaggrin, one of the terminal
differentiation markers of the epidermis, also aids in SC hydration. Filaggrin is degraded into free
amino acids in the SC. These amino acids are further metabolized into hygroscopic derivatives such as
pyrrolidone carboxylic acid from glutamine and urocanic acid from histidine. This makes filaggrin one
of the major factors influencing the hydration status of the SC.

1.2. Atopic Dermatitis and Barrier Function

In the presence of dermatitis, the hydration of the SC decreases and transepidermal water loss
(TEWL) increases [9]. In clinical practice, the measure of TEWL is an important indicator of skin barrier
function. Additionally, skin dryness (with or without clinical desquamation) is often associated to
inferior barrier function [10]. It has been shown that emollient use for eczematous dermatitis such as
AD improves barrier function by restoring hydration at SC and reducing TEWL [11]. AD is a common
chronic skin inflammatory disease. The pathogenesis of AD is attributed to both epidermal barrier
dysfunction and chronic Th2 inflammation within the skin. Impairments in skin barrier function
are inevitably present everywhere on skin surface in all AD patients independent of the clinical
appearance of the skin. As a result, this impairment of the skin barrier is considered a primary event
in AD pathogenesis [12]. Perturbed barrier function largely contributes to the allergic sensitization
to both protein antigens and staphylococcal superantigens. Moreover, the inflammation underneath
the barrier can alter the differentiation of epidermis, leading to disrupted barrier function. Research
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has shown that Th2-related cytokines (IL-4) exacerbate skin barrier impairment by modifying the
keratinocyte differentiation and lipid synthesis of the intercellular compartment of the SC [13,14].
Therefore, it has been proposed that early interventions to repair the epidermal barrier with the use of
appropriate soaps, emollients, or moisturizers may be useful in the control of this chronic disease as
well as the prevention of its progression, also known as atopic march [12].

1.3. Wound Healing

Wound healing (WH) is a dynamic and tightly regulated process of cellular, humoral, and
molecular mechanisms. The process is depicted in four phases: hemostasis, inflammation, proliferation,
and tissue remodeling [15]. In the hemostasis phase, the clotting cascade is instantly activated following
an injury, creating a temporary wound matrix [16]. The inflammation phase consists of an innate
immune response crucial in the breakdown and cleanup of tissue and pathogen debris at the site of
injury. Polymorphonuclear neutrophils (PMNs) release reactive oxygen species (ROS) and nitric oxide,
facilitate degradation of foreign organisms, and initiate phagocytosis of pathogens. Additionally,
PMNs secrete high levels of PMN collagenase, elastase, and matrix metalloproteinases (MMPs), which
break down damaged cells and extracellular matrix [17]. Macrophages work through phagocytosis of
pathogens and cell debris [18]. Increased numbers of macrophages along with persistent inflammation
are observed in chronic wounds [18]. In contrast to acute wounds, where inflammation is crucial
in the initial phases of wound repair, chronic non-healing wounds could result from the aberrant
inflammatory response in proportion to its intensity and duration [15–18]. Therefore, inflammation can
positively or negatively affect the WH process. Excessive inflammation and/or duration is correlated
with increased number of macrophages, resulting in compromised WH outcomes. Additionally,
excessive levels of MMPs that are released from PMNs and macrophages, lead to extensive damage
of extracellular matrix. This interferes with the normal formation of the scaffold for new cells to
migrate and proliferate in wounded areas [19]. Studies of impaired WH models of obese (ob/ob) and
diabetic (db/db) mice have shown that the number of macrophages is elevated in those models [20].
Wound closure in obese mice (ob/ob) can be improved by systemic anti-tumor necrosis factor-alpha
(TNF-↵) treatment through inactivation of macrophages [20]. Similarly, ROS and their oxidative
reaction products present in the wound may also play a major role in tissue damage [15–18]. Although
ROS are part of normal regulatory circuits of skin barrier function, inflammation, and WH under
physiological conditions, an excess in ROS is detrimental to the WH process [18].

1.4. Skin Inflammation and Proliferation

The skin encounters daily onslaught by exogenous stimuli. Noxious stimuli sometimes result
in injuries and/or infections, leading to wound, inflammatory dermatoses, skin aging, or skin
carcinogenesis. Inflammation takes place in response to these damages to the normal skin barrier.
At the molecular level, the inflammatory response participates in a series of complex repair pathways
related to the innate immune response, cutaneous differentiation, and skin barrier repair [15]. Initially,
upon inflammatory response, the keratinocytes and the innate immune cells such as leukocytes (PMNs,
macrophages, and lymphocytes), mast cells, and dendritic cells are activated [15]. Secreted cytokines
such as IL-1↵, TNF-↵ and IL-6 induce the chemokines of chemotaxis that attract the immune cells to the
site of injury and infection. ROS are produced by activated keratinocytes and immune cells. Immune
cells also secrete elastases and proteinases [15]. The inflammatory microenvironment contributes
to tissue repair and infection prevention/control. However, the chemokines produced by activated
keratinocytes and immune cells are also able to damage the skin tissue in proximity to the target
of the inflammatory response. Therefore, the intensity of inflammation and the time to resolution
are critical in avoiding or at least limiting damage to normal skin tissue [15]. Thus, modulation of
inflammation is important in maintaining skin homeostasis. If the initial acute response fails to resolve
the causative factor, then the inflammatory response will continue and the subsequent inflammatory
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microenvironment will disrupt skin homeostasis. If the dysregulation of inflammatory skin response
persists, chronic inflammatory dermatoses such as AD or psoriasis will arise [15,21].

In the epidermis, the metabolism of polyunsaturated fatty acids (PUFAs) is highly active.
Linoleic acid, the major 18-carbon n-6 PUFA in normal epidermis, in the epidermis is metabolized
via the 15-lipoxygenase pathway mainly into 13-hydroxyoctadecadienoic acid, which possesses
anti-proliferative properties [3]. Dietary deficiency of linoleic acid results in a scaly and pruritic
skin disorder similar to AD in hairless mice [22]. Arachidonic acid, the second major PUFA in the skin,
is another substrate of 15-lipoxygenase, by which it is transformed to 15-hydroxyeicosatetraenoic acid
(15-HETE). 15-HETE specifically inhibits leukotriene B4-induced chemotaxis of human PMNs [23].
However, arachidonic acid is mainly metabolized via the cyclooxygenase (COX) pathway into the
prostaglandins E(2), F(2↵), and D(2) [3]. At low concentrations, the prostaglandins function to
modulate skin homeostasis, whereas, at high concentrations, they induce skin inflammation and
hyperproliferation of keratinocytes [24]. Moreover, squamous cell carcinoma of skin is the neoplasm
that consistently overexpresses COX-2 in the parenchyma and the mesenchyma of premalignant and
malignant lesions [25]. Increased levels of prostaglandins E(2) and F(2↵) in premalignant and/or
malignant epithelial skin cancers are due to the constitutive upregulation of enzymes such as COX-2,
causing increased prostaglandin biosynthesis and the downregulation of 15-hydroxy-prostaglandin
dehydrogenase (15-PGDH), which is involved in the inactivation of prostaglandins [26]. Thus, topical
supplementation with plant oils that provide local cutaneous anti-inflammatory and anti-proliferative
metabolites could serve as the monotherapy or as adjuncts to standard therapeutic regimens for the
management and prevention of both inflammatory skin disorders and actinic keratoses.

1.5. Reactive Oxidative Stress, Skin Aging and Skin Cancer

The aging of our skin can be discussed as two entities: chronological and environmentally-
influenced aging [27]. Clinically, chronological and environmentally-influenced aging show skin
changes including thinning, loss of elasticity, roughness, wrinkling, increased dryness, and impairment
of the skin barrier. Chronological aging depends on a decrease in cellular replacement (senescence) of
the epidermis, dermis, and hypodermis, but also from impairment in the remodeling of the extracellular
matrix (e.g., collagen bundles and elastic fibers) [28]. The second type of skin aging is mediated
by extrinsic factors such as UV radiation, air pollution, smoking, changes in external temperature,
and other agents of skin aging exposome [29]. Photoaging by chronic exposure to UV radiation is
the best characterized. Clinical signs of photoaging include dyspigmentation (mostly lentigo and
freckling), solar elastosis, actinic keratosis, and seborrheic keratosis [30]. Photoaging is attributed to
photo-oxidative damage to skin, mainly by high levels of ROS induced by UV radiation [31]. ROS result
in collagen degradation and its accumulation in the dermis, also known as solar elastosis. ROS levels
are regulated by anti-oxidant enzymes in skin such as superoxide dismutase (SOD), catalase (CAT),
and glutathione (GSH). If anti-oxidant defenses are overwhelmed after extensive UV light exposure,
ROS production exceeds the capacity of antioxidant defenses in the skin [32]. This causes oxidative
stress, which damages skin cells and alters their gene expression, leading to photoaging, but also
promoting cutaneous carcinogenesis (non-melanoma and melanoma skin cancers) [33–35].

2. The Constituents of Plant Oils

Plant oils have long been used on the skin for cosmetic and medical purposes because they have
been found to have many positive physiological benefits. For example, plant oil application may act as
a protective barrier to the skin by an occlusive effect, allowing the skin to retain moisture, resulting in
decreased TEWL values. Additionally, topical products have the benefit of higher bioavailability in the
skin and having a localized effect rather than systemic effects. Previous research on plant oils have
demonstrated that almond, jojoba, soybean, and avocado oils, when applied topically, mostly remain
at the surface of skin, without deep penetration into the first upper layers of the SC [11]. Although
triglycerides do not penetrate deeper in SC, glycerol contributes to the SC hydration. Free fatty acids
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(FFAs), specifically monounsaturated FFAs such as oleic acid, may disrupt skin barrier and act as
permeability enhancers for other compounds present in plant oils [36]. Other components such as
phenolic compounds and tocopherols exhibit an antioxidant effect and may modulate physiological
processes such as skin barrier homeostasis, inflammation, and WH [37–39]. When topically applied
to hairless mice, sodium dl-↵-tocopheryl-6-O-phosphate, a water-soluble derivative of vitamin
E (dl-↵-tocopherol), enhances ceramide synthesis and gene expression of differentiation markers
(transglutaminase 1, cytokeratin 10, involucrin, and loricrin) [40]. Phospholipids, another component
of plant oils, mainly fuse with the outer lipid layer of the SC, potentially acting as chemical permeability
enhancers [41]. In a study of the murine AD model with given dietary phospholipid supplementation,
phospholipids have been shown to enhance skin barrier and display the anti-inflammatory effect
by regulating the covalently bound !-hydroxy ceramides in the epidermis and decreasing the gene
expression of both thymus activation-regulated chemokine (TARC) and thymic stromal lymphopoietin
(TSLP) [42]. Even without penetrating deeper into the epidermis, the occlusive effect of the plant oil
topical application decreases the loss of water from the SC and regulates keratinocyte proliferation [43].

Plant oils can be classified into essential oils and fixed oils. This article focuses only on fixed
oils, which are not volatile at room temperature. Although there are different ways to obtain
plant oils, cold-pressed plant oils have better nutritive properties than those that have undergone
the refining process. This is because cold-pressing procedure does not involve heat or chemical
treatments, which may alter their composition and therapeutic effects. Fixed plant oil components
include triglycerides, FFAs, tocopherols, sterols, stanols, phospholipids, waxes, squalene, phenolic
compounds [44], etc. These different compounds, when topically applied, influence skin physiology
(skin barrier, inflammatory status, antioxidant response, and proliferation) differently.

Plant oils also vary by the type and the amount of triglycerides and FFAs, e.g., straight-chain
saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs). Topical applications of SFAs and UFAs
in healthy volunteers showed differences in TEWL and irritant skin response [45]. Since composition
and concentration of SFAs and UFAs are important in topical products, it is important to characterize
them in each type of plant oil. Particularly, UFAs show different physiological responses when
topically applied compared to TEWL [45]. Linoleic acid, for example, has a direct role in maintaining
the integrity of the water permeability barrier of the skin [46,47]. The major metabolite of linoleic
acid in the skin is 13-hydroxyoctadecadienoic acid (13-HODE), which possesses anti-proliferative
properties [3]. In contrast, oleic acid is detrimental to skin barrier function [48]. Oleic acid causes barrier
disruption and eventually induces dermatitis under continuous topical application [48]. In addition
to their role in skin barrier restoration/disruption, enriched FFA plant oils have also been studied as
penetration enhancers (e.g., transepidermal drug delivery). Research has suggested that oils composed
mostly of monounsaturated oleic acid increased skin permeability more than oils containing an almost
even mixture of both monounsaturated and polyunsaturated fatty acids. Viljoen et al. has suggested
that the lipid penetration within the epidermis follows the order: olive oil > coconut oil > grape seed oil
> avocado oil [49]. Moreover, the concentration of FFAs such as oleic acid with respect to triglycerides
correlates with clinical measures of skin barrier function (TEWL). This ratio determines molecular
interactions with SC lipids and the extent of their penetration within the epidermis [36].

Poly- and monounsaturated fatty acids may influence the inflammatory responses either as
soluble lipoic mediators or in the form of phospholipids anchored in the cell membrane. Topical
applications of linolenic (n-3), linoleic (n-6), and oleic (n-9) FFAs can modulate the closure of surgically
induced skin wounds [50]. n-9 FFAs induced faster wound closure when compared to n-3, n-6, and
control [50]. In fact, n-9 FFAs strongly inhibited the production of nitric oxide at the wound site.
A mild improvement on wound closure was observed in the n-6 FFA-treated animals, correlating
with a peak in nitric oxide production at 48 hours post-operatively. n-3 FFAs treatment significantly
delayed wound closure, which correlates to a peak in nitric oxide at three hours post-operatively [50].
According to a previous study about the administration of pequi (Caryocar brasielense) almond oil in an
acute hepatic injury model in rat, topical applications of poly- and monounsaturated FFAs may have



Int. J. Mol. Sci. 2018, 19, 70 6 of 21

a relevant role and potential therapeutic implication on WH through their modulatory effects on the
inflammation rather than effects on cellular proliferation [51].

Unsaponifiables are also essential in the biological function of plant oils [44]. They have a high
potential for antioxidant activity. Antioxidant activity is derived from tocopherols, carotenoids,
triterpenes, flavonoids, and phenolic acids that protect from ROS [33–35].

2.1. Phenolic Compounds

Phenolic compounds are present in all vegetable oils in different concentrations. Phenolic compounds
are the main antioxidants found in virgin olive oil, a well characterized oil known for its health benefits.
These compounds are very important for the oxidative stability of the PUFAs within the oil. The main
phenolic subclasses present in olive oil are phenolic alcohols, phenolic acids, flavonoids, lignans, and
secoiridoids [52]. Another plant oil, grape seed oil, contains a large amount of similar phenolic compounds,
including flavonoids, phenolic acids, tannins, and stilbenes [53]. The main polyphenols in grape seed oil
are catechins, epicatechins, trans-resveratrol, and procyanidin B1 [54].

2.2. Triterpenes

Triterpenes have been found in many plant species, and are usually present in a small fraction of
plant oil constituents. This group of compounds contains a wide range of molecules that participate
in many biological reactions. Triterpenes may induce cell migration, proliferation, and collagen
deposition [55]. Triterpenes also enhance the tissue repair by reducing the length of time for wound
closure, and modulating the production of ROS in the wound microenvironment [55]. Betulin, a form
of triterpene, is a major component of birch bark, which has been clinically shown to accelerate acute
WH. Betulin treatment in keratinocyte cultures has shown to increase mRNA levels of chemokines,
pro-inflammatory cytokines, and mediators that are important in WH (Figure 1). Upregulation of these
crucial cytokines and mediators at the protein level were also demonstrated [56]. Of note, triterpenes
are also abundant in shea butter, a popular plant oil used in skin care products and cosmetics [57].
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Figure 1. The potential benefits of plant oil topical application are diverse. Physiological responses are
a result of the interaction between the bioactive compounds and the pathophysiological context of the skin.

3. The Potential Beneficial Effects of Topical Application of Plant Oils on Skin

The following sections review the current evidence on some plant oils and their in vivo and ex
vivo effects on the skin homeostasis (Table 1).
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Table 1. The effects of topically applied plant oils on skin pathology.

Plant Oils Skin Barrier
Repair

Anti-Bacterial
Effect

Anti-Inflammatory
Effect

Antioxidant
Effect

Wound
Healing Skin Aging Skin Cancer References

Olive oil No ? Yes Yes Yes Possible effect Yes

Cardoso CR et al., 2004 [50]
Nasopoulou C et al., 2014 [58]

Donato-Trancoso A et al., 2016 [59]
Zahmatkesh M et al., 2015 [60]

Budiyanto A et al., 2000 [61]
Danby SG et al., 2013 [62]
Cooke A et al., 2016 [63]
Norlen L et al., 2016 [64]
Korac RR et al., 2011 [65]

Sunflower seed oil Yes ? Yes ? Possible effect ? Yes

Cardoso et al., 2004 [50]
Danby SG et al., 2013 [62]
Cooke A et al., 2016 [63]
Norlen L et al., 2016 [64]

Kapadia GJ et al., 2002 [66]

Grape seed oil ? Yes Possible effect Yes Yes Possible effect Possible effect

Kapadia GJ et al., 2002 [66]
Shivananda Nayak B et al., 2011 [67]

Khanna S et al., 2002 [68]
Chan MM et al., 2002 [69]

Park K et al., 2013 [70]
Davidov-Pardo G et al., 2015 [71]

Shinagawa FB et al., 2015 [72]

Coconut oil Yes Yes Yes Yes Yes Yes ?

Evangelista MT et al., 2014 [73]
Nevin KG et al., 2010 [74]

Kim S et al., 2017 [75]
Korac RR et al., 2011 [65]

Preuss HG et al., 2005 [76]
Oyi AR et al., 2010 [77]

Esquenazi D et al., 2002 [78]

Safflower seed oil ? ? Yes ? ? ? ? Chen CY et al., 2007 [79]
Lopez-Lazaro M, 2009 [80]

Argan oil Yes ? Yes ? Yes ? Possible effect

Boucetta KQ et al., 2015 [81]
Manca ML et al., 2016 [82]
Jordan M et al., 2012 [83]
Avsar U et al., 2016 [84]
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Table 1. Cont.

Plant Oils Skin Barrier
Repair

Anti-Bacterial
Effect

Anti-Inflammatory
Effect

Antioxidant
Effect

Wound
Healing Skin Aging Skin Cancer References

Soybean oil Yes Yes Yes Yes ? ? ?

Patzelt A et al., 2012 [11]
Jhan JK et al., 2016 [85]
Kim JN et al., 2017 [86]

Bonina F et al., 2005 [87]

Peanut oil Yes ? ? ? ? Yes Yes
Korac RR et al., 2011 [65]

Zhai H et al., 2003 [88]
Lasne C et al., 1991 [89]

Sesame oil Possible effect ? Yes Yes ? Yes Yes

Kapadia GJ et al., 2002 [66]
Korac RR et al., 2011 [65]
Chiang JP et al., 2005 [90]
Nasiri M et al., 2017 [91]
Hsu DZ et al., 2013 [92]

Bigdeli Shamloo et al., 2015 [93]

Avocado oil ? ? Possible effect ? Yes ? ?

Patzelt A et al., 2012 [11]
De Oliveira AP et al., 2013 [94]

Nayak BS et al., 2008 [95]
Lamaud E et al., 1982 [96]

Borage oil Yes ? Possible effect ? ? ? ? Kanehara S et al., 2007 [97]

Jojoba oil Yes Possible effect Yes Yes Yes Yes ? Meier L et al., 2012 [98]
Ranzato E et al., 2011 [99]

Oat oil Yes Possible effect Yes Yes ? ? ?

Nebus J et al., 2009 [100]
Reynertson KA et al., 2015 [101]

Sur R et al., 2008 [102]
Chon SH et al., 2015 [103]

Pomegranate seed oil ? ? ? Yes ? Possible effect Possible effect Hora J et al., 2003 [104]

Almond oil Possible effect ? ? ? ? Yes ?
Timur Tashan S et al., 2012 [105]
Hajhashemi M et al., 2017 [106]

Sultana Y et al., 2007 [107]

Bitter apricot oil ? ? ? ? ? ? Possible effect Li K et al., 2016 [108]

Rose hip oil Possible effect ? Yes Yes ? Yes ? Chrubasik C et al., 2008 [109]
Shabykin GP et al., 1967 [110]

German chamomile oil Possible effect ? Yes ? ? ? ? Lee SH et al., 2010 [111]

Shea butter Possible effect ? Yes Yes ? ? ? Verma N et al., 2012 [112]
Hon KL et al., 2015 [113]

When there is no concrete evidence for the specific effect of topical treatment of some plant oils, it is indicated with “?”.
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3.1. Olive Oil

Olive oil comes from the fruits of Olea europaea trees. It consists mainly of oleic acid, with
smaller quantities of other fatty acids such as linoleic acid and palmitic acid. More than 200 different
chemical compounds have been detected in olive oil, including sterols, carotenoids, triterpenic alcohols,
and phenolic compounds. Hydrophilic phenols are the most abundant antioxidants of olive oil.
The phenolic contents have antioxidant properties higher than those of vitamin E. In fact, these phenolic
compounds and their antioxidant activity exhibit anti-inflammatory properties when olive oil is
included in regular diet [58]. Unsurprisingly, olive oil has been used as a skin product and hair cosmetic
for a long time in several cultures. Studies on mice have shown that topical application of olive oil on
pressure ulcers improves WH through the effects of anti-inflammation, reducing oxidative damage, and
promoting dermal reconstruction [59]. In rat experiments, wound contraction of full-thickness burns
occurred faster with olive oil treatment when compared to the silver sulfadiazine and normal saline
(control) group. Studies have also shown that concomitant use of other oils such as buckthorn oil with
olive oil have positive effects on the skin [114]. In a randomized controlled trial by Zahmatkesh et al.,
a mixture of olive oil, sesame oil, and honey was demonstrated to be a useful treatment for burns,
by preventing infections, accelerating tissue repair, and facilitating debridement [60]. Moreover, in
a murine study with UVB radiation, Ichihashi et al. found that extra virgin olive oil applied to the
skin delayed the onset and reduced the incidence of skin cancer development, likely secondary to
reduced number of 8-hydroxy-20-deoxyguanosine (8-OHdG) positive cell formation (a biomarker of
oxidative stress and carcinogenesis) [61]. It has also been demonstrated that daily consumption of
olive oil phenolics protect from DNA oxidation in postmenopausal women [115] and interfere with G1
cell cycle in human colon adenocarcinoma cells and promyelocytic leukemia cells [116].

In contrast to its positive role in WH promotion and reducing skin cancer development, topically
applied olive oil has a detrimental effect on SC integrity and skin barrier function [62,117]. There is
evidence of increased TEWL after topical application to the skin of the forearms of adult volunteers
with and without AD [62]. Experiments on mice also elicited similar results [117]. Although skin
barrier restoration is a key event in WH, olive oil may promote WH by modulating early phases such
as inflammation, and stimulating dermal reconstruction, both of which are not related to subsequent
re-epithelialization and the consequent permeability barrier restoration. At the present, it is widely
accepted that minor components of olive oil also exert potent anti-inflammatory activities [58].

Olive pomace oil, a natural by-product of olive oil production, has also been found to contain
minor constituents with antioxidant, antithrombotic, and antiatherogenic activities when it is included
in the regular diet [58]. However, the effects of olive pomace oil in the skin have not been
characterized yet.

3.2. Sunflower Seed Oil

Sunflower seed oil originates from the seeds of Helianthus annus. Sunflower oil has been
recommended for the removal of hot tar in patients of tar burn [118]. The components of sunflower
oil mainly consist of oleic and linoleic acids. Sunflower seed oil contains relatively higher linoleic
acid concentration relative to olive oil. This property makes sunflower oil a suitable ingredient in
skin products due to the positive benefits of linoleic acid [117]. Sunflower seed oil has been shown
to preserve SC integrity and improve hydration of the adult skin without inducing erythema [62].
Linoleic acid serves as an agonist at peroxisome proliferator-activated receptor-alpha (PPAR-↵), which
enhances keratinocyte proliferation and lipid synthesis [62]. This in turn enhances skin barrier repair.
Natural oils such as sunflower, sesame, or safflower seed oil have been suggested as good options
for their use in promoting skin barrier homeostasis [119]. However, in a pilot study conducted by
Cooke et al. of neonatal skin topically treated with sunflower seed oil or olive oil, there were no
differences in lipid structure changes, TEWL, hydration, skin surface pH, erythema, or skin assessment
scores between the olive oil and sunflower oil groups [63]. According to Norlen (2016), however, this
well-conducted pilot study needs a long-term observational study to investigate whether the topical
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application of oils from birth may contribute to the development of atopic eczema [64]. Moreover,
in contrast to delayed improvement in lipid ordering observed after topical application of olive oil, this
feature was not observed after application of sunflower seed oil [64]. Sunflower seed oil also exhibited
a chemopreventive effect in a murine model of skin cancer with two-stage carcinogenesis. Sesamol,
one of its constituent, specifically play a role in the chemopreventive effects [66].

3.3. Grape Seed Oil

Grape seed oil comes from the seeds of Vitis vinifera. It is rich in phenolic compounds, FFAs, and
vitamins. Grape seed oil has been evaluated for WH activity in rat models. Shivananda Nayak et al. has
shown that the hydroxyproline content of the granulation tissue was significantly higher in the animals
treated with the grape oil [67]. Additionally, the rate of wound closure was also quicker, suggesting
their WH potential [67]. However, the direct topical application of grape seed oil on human skin has
not yet been well investigated. Grape seed proanthocyanidin extract, which contains resveratrol, has
been topically applied to mice, showing faster wound contraction, enhanced synthesis of vascular
endothelial growth factor (VEGF), and greater connective tissue deposition [68]. Resveratrol displays
a direct antimicrobial activity against pathogens, such as Staphylococcal aureus, Enterococcus faecalis,
and Psedomonas aeruginosa [69]. Topically applied resveratrol increases cathelicidin production in
normal skin [70]. Cathelicidin is one of the inducible antimicrobial peptides and inhibits the growth of
Staphylococcal aureus [70]. Studies are currently being done to successfully encapsulate and preserve
resveratrol from grape seed oil [71]. In addition to resveratrol, grape seed oil has a high content of
linoleic acid, vitamin E, and phenolic compounds. Phenolic compounds, resveratrol, and vitamin E in
grape seed oil provide most of its antioxidant activity. Moreover, phytosterols present in grape seed oil
may modulate pro-inflammatory mediators [72].

3.4. Coconut Oil

Coconut oil is extracted from the kernel or meat of mature coconuts harvested from the coconut
palm (Cocos nucifera). Coconut is composed of many FFAs including lauric acid (49%), myristic acid
(18%), palmitic acid (8%), caprylic acid (8%), capric acid (7%), oleic acid (6%), linoleic acid (2%), and
stearic acid (2%) [6]. Coconut oil has been shown to be as effective and safe as mineral oil when
applied as moisturizers for mild to moderate xerosis [120]. In a study of pediatric patients with mild
to moderate AD, topical applications of virgin coconut oil was shown to be effective in decreasing
the severity of the disease, ameliorating disease severity index (SCORAD), and improving barrier
function (TEWL and skin capacitance) [73]. Topical applications of virgin coconut oil are effective
in promoting WH through faster epithelization. A histopathological study by Nevin et al. revealed
increased neovascularization, fibroblast proliferation, pepsin-soluble collagen synthesis, and turnover
of collagen in wounds [74]. Kim et al. demonstrated that coconut oil increased expression of CE
components, thereby contributing to protective barrier functions of the SC [75]. Furthermore, the
expression of inflammatory profile was lower in the coconut oil-treated group after exposure to UVB
radiation [75]. Topical coconut oil protects the skin from UV radiation [65].

Of all the acid components of coconut oil, monolaurin has been shown to have additional
significance. Monolaurin is a monoglyceride derived from lauric acid. It comprises nearly 50%
of coconut’s fat content. Monolaurin displays antimicrobial activity by disintegrating the lipid
membrane of lipid-coated bacteria including Propionibacterium acnes, Staphylococcus aureus, and
Staphylococcus epidermidis [76]. Coconut oil in concentrations of 5% to 40% (w/w) exhibited bactericidal
activity against Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, and Bacillus subtilis [77].
Cellular studies have also shown that monolaurin exhibits antiviral and antifungal activity [78].

3.5. Safflower Seed Oil

Safflower seed oil comes from the seeds of the Carthamus tinctorius. It contains a large
amount of the polyunsaturated linoleic acid (70%) and monounsaturated oleic acid (10%), and lesser
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amounts of stearic acid. Safflower has been shown to be a very good analgesic and antipyretic.
Modern pharmacological studies demonstrated that the extracts of safflower had several physiological
functions, such as anticoagulation, vasodilation, antioxidation, melanin production inhibition,
immunosuppression, and antitumor activity. For example, the flavone luteolin and its glucopyranoside
have been reported to exert anti-inflammatory effects at concentrations in the low micromolar
range [79,80,121]. This anti-inflammatory effect is explained by inhibition of NF-B activity [80].
Fatty acid constituents of topical applied plant oils may modify the fatty acid profiles of the babies.
Solanki et al. have showed that topically applied safflower seen oil is readily absorbed in neonates and
probably it has nutritional benefits [122]. Fatty acid profiles showed significant rise in linolenic acid
and arachidonic acid under topical safflower oil treatment [122]. Since the metabolism of PUFAs by
skin epidermal enzymes is related to the generation of anti-inflammatory molecules, the modification
in fatty acid profiles might be of interest in clinical practice [3].

3.6. Argan Oil

Argan oil is produced from the kernels of Argania spinosa L. Argan oil is composed of
mono-unsaturated (80%) and saturated (20%) fatty acids. It contains polyphenols, tocopherols, sterols,
squalene, and triterpene alcohols. Traditionally, argan oil has been utilized in cooking, in the treatment
of skin infections, and in skin/hair care products. Daily topical application of argan oil has also
been shown to improve skin elasticity [81] and skin hydration by restoring the barrier function and
maintaining the water-holding capacity [123]. Additionally, topical applications onto skin provide
a softening and relaxing effect on the skin, as well as helping to facilitate the accumulation and
transdermal delivery of topical drugs such as allantoin [82]. Recently, tocopherol-rich argan oil-based
nanoemulsions has been developed as vehicles possessing anticancer activity in murine breast and
colon carcinoma cells [83]. Argan oil has also been shown to be effective in enhancing WH created
second-degree burns in rats [84].

3.7. Soybean Oil

Soybean oil is a vegetable oil extracted from the seeds of the Glycine max. Most research on
soybean oil have been conducted on its extracts. Topical application of soybean oil extracts has been
shown to decrease the TEWL of forearm skin [11]. This feature may be linked to the presence of soy
phytosterols, which have shown a positive effect on skin barrier recovery [124]. On the other hand,
anthocyanin contents in the seed coat of black soybean were shown to have anti-human tyrosinase
activity and antioxidative activity [85]. Black soybean anthocyanins attenuate inflammatory responses
by suppressing ROS production as well as mitogen activated protein kinases that are important in the
signaling of lipopolysaccharide-stimulated macrophages [86]. Moreover, topical soybean oil protects
against UVB-induced cutaneous erythema [87].

3.8. Peanut Oil

Peanut oil has been shown to have hydrating effects in human skin without significantly
increasing TEWL [88]. Topical peanut oil protects the skin from UV radiation [65]. Lasne et al.
also showed the inhibition of chemically-induced skin carcinogenesis in mice treated with topical
peanut oil [89].The increasing prevalence of peanut allergy has led to new discussion about the safety
of topical preparations containing peanut oil. However, research has suggested that the refined peanut
oil-containing preparation is safe for topical use, even in persons who are sensitive to peanuts [125,126].

3.9. Sesame Oil

Sesame oil is derived from Sesamum indicum. Sesame oil has been incorporated in many food items
in the past 6000 years. Sesame seeds contain significant amounts of lignans such as sesamin, sesamolin,
and sesaminol [127], all of which exhibit antioxidative activity. Sesamin is highly hydrophobic.
A significant positive correlation was observed between the oil content of sesame seed and the sesamin
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content in the oil [128]. Research has shown that the topical use of sesame oil might attenuate oxidative
stress by inhibiting the production of xanthine oxidase and nitric oxide in rats [90]. Sesame oil has been
used in traditional Taiwanese medicine to relieve the inflammatory pain of joints and wounds. Massage
with topical sesame oil has shown to be effective in significantly reducing pain severity of patients
with limb trauma [91]. In a rat model of monosodium urate monohydrate (MSU) crystal-induced
acute inflammatory response in a pseudosynovial cavity, orally administered sesame oil reduced
inflammation [92]. In a clinical study by Shamloo et al., topical application of sesame oil was shown
to lower the severity of pain and reduce the frequency of nonsteroidal anti-inflammatory drug use
in patients with limb trauma [93]. Topical sesame oil also protects the skin from UV radiation [65].
In addition, sesame oil showed a chemopreventive effect in a murine model of skin cancer with
two-stage carcinogenesis. Its constituent, sesamol, has also been demonstrated to play a role in
chemoprevention [66].

3.10. Avocado Oil

Avocado oil is derived from the fruit of the Persea americana. Avocado oil extracted from the pulp
of the fruit is rich in linoleic acid (6.1–22.9%), linolenic acid (0.4–4.0%), and oleic acid (31.8–69.6%).
It also contains �-sitosterol, �-carotene, lecithin, minerals, and vitamins A, C, D, and E [94]. It is an
excellent source of enrichment for dry, damaged, or chapped skin [11]. Research has been conducted
on the effect of topical administration of avocado fruit extract on wound models in rats, revealing
faster re-epitheliazation and higher hydroxyproline content of the repaired wound [95]. The topical
application of avocado oil in rats has also been shown to increase collagen synthesis and decrease the
numbers of inflammatory cells during the WH process [94,96].

3.11. Borage Oil

Borage oil is derived from the seeds of the Borago officinalis. Borage oil contains high levels of the
!-6 series essential fatty acids that are important in skin structure and function [129]. The linoleic acid
in borage oil contributes to its therapeutic actions in AD. Topical application of borage oil in infants
and children with seborrheic dermatitis or AD has been shown to normalize skin barrier function [130].
A double-blind, placebo-controlled clinical trial was performed to test clinical effects of undershirts
coated with borage oil on children with AD [97]. In the group treated with borage oil, TEWL on the
skin of back decreased. Additionally, no side effects were found in these subjects [97].

3.12. Jojoba Oil

Jojoba (Simmondsia chinensis) is a long-lived, drought resistant, perennial plant. Jojoba oil exhibits
a high oxidative stability and resistance to degradation [131]. Jojoba oil is widely used in cosmetic
formulas such as sunscreens and moisturizers. It has been shown to be effective in enhancing the
absorption of topical drugs [132–134]. The high content of wax esters makes jojoba oil a good repair
option for dermatoses with altered skin barriers, such as seborrheic dermatitis, eczematous dermatitis,
AD, and acne [98]. Jojoba oil also has a proven anti-inflammatory effect, with potential uses in a variety
of skin conditions including skin infections, skin aging, and WH [99,132].

3.13. Oat Oil

Oat oil originates from Avena sativa. It consists of 36–46% linoleic and 28–40% oleic acid [135].
Oat in colloidal form is a centuries-old topical treatment for a variety of skin conditions, including
skin rashes, erythema, burns, itch, and eczema. Although oleic acid may disrupt skin barrier [62,117],
the high percentage (36–46%) of linoleic acid may contribute to the final effect of oat oil on barrier
repair [47,100]. Colloidal oat extracts exhibit direct anti-oxidant and anti-inflammatory activities, which
may explain the efficacy of lotions containing colloidal oatmeal [101]. Avenanthramides are phenolic
compounds present in oats. Avenanthramides inhibit activation of NF-B and reduce inflammation by
inhibiting cytokines [102]. In vitro studies have shown that oat oil can upregulate the expression of
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differentiation genes (e.g., involucrin, small prolin-rich protein family (SPRRs), and transglutaminase
1) and ceramide processing genes (�-glucocerebrosidase, sphingomyelinases 3 and ABCA12) in
keratinocytes [103]. In addition, oat oil treatment in keratinocytes was shown to have significantly
increased ceramide levels (70%) through the activation of peroxisome proliferator-activated receptors
(PPARs) [103].

3.14. Pomegranate Seed Oil

Pomegranate seed oil comes from the seed of Punica granatum. It is a good source of essential
FFAs, phenolic compounds, phytosterols, and lipid-soluble fractions [136]. Pomegranate seed oil
contains 63% UFA, including linoleic acid (29%) and oleic acid (10%) [136]. Pomegranate seed oil
is well known for its high concentration of polyphenolic compounds and for its antioxidant and
anti-inflammatory properties. An oil-in-water cream containing pomegranate seed oil and C. lechleri
resin extract can be helpful in the prevention or improvement of skin changes associated with
striae [137]. Pomegranate seed oil has been used in nanoemulsions to facilitate the delivery of
pomegranate peel polyphenols [138]. Nanoemulsions with pomegranate seed oil has been shown
to improve both photostability and in vivo anti-nociceptive effect of ketoprofen [139]. A study of
CD1 mice with topically applied pomegranate seed oil has shown that pomegranate seed oil (5%)
significantly decreased tumor incidence and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced
ornithine decarboxylase activity in the chemical-induced skin cancer model. The results highlighted
the potential of pomegranate seed oil as a chemopreventive agent against skin cancer [104].

3.15. Almond Oil

Almond oil comes from Oleum amygdalae. Almond oil has emollient and sclerosant properties,
which have been used to improve complexion and skin tone. In a nonrandomized study, Tashan and
Kafkasli (2012) have demonstrated that massage with bitter almond oil may be effective in reducing the
visibility of current striae gravidarum, and in the prevention of new striae [105]. Other formulations
have been shown to ameliorate striae itching [106]. However, other products containing almond oil
have not shown to have similar benefit [140]. For example, sweet almond oil in creams are more
effective than the base cream at ameliorating the itching of striae and preventing its progression [106].
In a study by Sultana et al. done with murine models, topical almond oil was shown to prevent the
structural damage caused by UV irradiation [107].

3.16. Bitter Apricot Oil

In Eastern medicine, bitter apricot seed (Semen Armeniacae amarum) has been traditionally used to
treat skin diseases. Bitter apricot oil has been shown to induce apoptosis of HaCaT cells through both
death receptor and mitochondrial pathways. Apoptosis has been shown to correlate with inhibition
of the NF-B pathway [108]. It has been suggested that apricot oil may be a potential candidate for
psoriasis treatment given its pro-apoptotic effect on human keratinocytes [108].

3.17. Rose Hip Oil

Rose hip oil is extracted from seeds of rose hip (Rosa canina L.). Rose hip oil contains substantial
UFAs. The most abundant fatty acid is linoleic acid (35.9–54.8%), followed by ↵-linolenic acid
(16.6–26.5%), and oleic acid (14.7–22.1%) [141]. An appreciable number of lipophilic antioxidants
is present, especially the tocopherols and carotenoids. Rose hip oil also contains high level of
phenolic acids, especially p-coumaric acid methyl ester, vanillin, and vanillic acid. Due its high
composition of UFAs and antioxidants, this oil has relatively high protection against inflammation and
oxidative stress [109]. Shabikin et al. has tested the efficacy of topical rose hip seed oil together with
an oral fat-soluble vitamins on different inflammatory dermatitis such as eczema, neurodermatitis,
and cheilitis, with promising findings of the topical use of rose hip seed oil on these inflammatory
dermatoses [110].
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3.18. German Chamomile Oil

German chamomile oil comes from Matricaria recutita. In a study with the murine AD model,
serum IgG1 and IgE levels were significantly decreased in the group treated with German chamomile
oil application. Topical application of this oil was associated with lower serum histamine level and
decreased frequency of scratching among subjects. The result demonstrated the immune-regulatory
potential of German chamomile oil for alleviating AD through modulation of Th2 cell activation [111].

3.19. Shea Butter

Shea butter is extracted from the kernels of the sheu tree (Vitellaria paradoxa). Shea butter is
composed of triglycerides with oleic, stearic, linoleic, and palmitic fatty acids, as well as unsaponifiable
compounds [142]. Shea butter is frequently used in the cosmetic industry due to its high percentage
of the unsaponifiable fraction (e.g., triterpenes, tocopherol, phenols, and sterols), which possesses
potent anti-inflammatory and antioxidant properties [57]. In the study of lipopolysaccharide-activated
macrophage cells, shea butter exhibited anti-inflammatory effects through inhibition of iNOS, COX-2,
and cytokines via the NF-B pathway [112]. Additional research on AD has shown that the cream
containing shea butter extract had the same efficacy as ceramide-precursor product [113].

4. Conclusions

Topical applications of plant oils may have different effect on the skin according to their
composition and the pathophysiological context of the skin. The composition varies by different
extraction methods. When applied topically, constituents of plant oils (triglycerides, phospholipids,
FFAs, phenolic compounds and antioxidants) may act synergistically by several mechanisms:
(i) promoting skin barrier homeostasis; (ii) antioxidative activities; (iii) anti-inflammatory properties;
(iv) direct and indirect (upregulation of antimicrobial peptides) anti-microbial properties; (v) promoting
wound healing; and (vi) anti-carcinogenic properties. Future studies can add to current findings to
allow for better understanding of these oils, with the potential to develop dermatological treatments
and skin care products using these oils.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

15-HETE
AD

15-hydroxyeicosatetraenoic acid
Atopic dermatitis

CE Cornified envelope
COX Cyclooxygenase
FFA Free Fatty Acid
LB Lamellar body
MMP Matrix metalloproteinase
NMF Natural moisturizing factor
PMN Polymorphonuclear neutrophils
PPAR
PUFA

Peroxisome proliferator-activated receptor
Polyunsaturated fatty acid

ROS Reactive oxygen species
SC Stratum corneum
SFA Saturated Fatty Acid
SG Stratum granulosum
TEWL Transepidermal water loss
TNF-↵ Tumor necrosis factor-alpha
UFA Unsaturated Fatty Acid
UV Ultraviolet
WH Wound healing
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